半导体材料发展路径(数据来源:浙商证券研究所 )
碳化硅从材料到半导体功率器件会经历单晶生长、晶锭切片、外延生长、晶圆设计、制造、封装等工艺流程。在合成碳化硅粉后,先制作碳化硅晶锭,然后经过切片、打磨、抛光得到碳化硅衬底,经外延生长得到外延片。外延片经过光刻、刻蚀、离子注入、金属钝化等工艺得到碳化硅晶圆,将晶圆切割成die,经过封装得到器件,器件组合在一起放入特殊外壳中组装成模组。
-
耐高温。碳化硅的禁带宽度是硅的2-3倍,在高温下电子不易发生跃迁,可耐受更高的工作温度,且碳化硅的热导率是硅的4-5倍,使得器件散热更容易,极限工作温度更高。耐高温特性可以显著提升功率密度,同时降低对散热系统的要求,使终端更加轻量和小型化。 -
耐高压。碳化硅的击穿电场强度是硅的10倍,能够耐受更高的电压,更适用于高电压器件。 -
耐高频。碳化硅具有2倍于硅的饱和电子漂移速率,导致其器件在关断过程中不存在电流拖尾现象,能有效提高器件的开关频率,实现器件小型化。 -
低能量损耗。碳化硅相较于硅材料具有极低的导通电阻,导通损耗低;同时,碳化硅的高禁带宽度大幅减少泄漏电流,功率损耗降低;此外,碳化硅器件在关断过程中不存在电流拖尾现象,开关损耗低。

二. 超结(SJ)MOS器件


GTR饱和压降低,载流密度大,但驱动电流较大;(因为Vbe=0.7V,而Ic可以很大(跟PN结材料和厚度有关))MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。(因为MOS管有Rds,如果Ids比较大,就会导致Vds很大)
IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
IGBT最主要的作用就是把高压直流变为交流,以及变频(所以用在电动车上比较多)。

IGBT有N沟道型和P沟道型两种,主流的N沟道IGBT的电路图符号及其等效电路如下:

所以整个过程就很简单:
当栅极G为高电平时,NMOS导通,所以PNP的CE也导通,电流从CE流过。
当栅极G为低电平时,NMOS截止,所以PNP的CE截止,没有电流流过。
IGBT与MOSFET不同,内部没有寄生的反向二极管,因此在实际使用中(感性负载)需要搭配适当的快恢复二极管。

IGBT的优缺点
优点:
1、具有更高的电压和电流处理能力。
2、极高的输入阻抗。
3、可以使用非常低的电压切换非常高的电流。
4、电压控制装置,即它没有输入电流和低输入损耗。
5、栅极驱动电路简单且便宜,降低了栅极驱动的要求
6、通过施加正电压可以很容易地打开它,通过施加零电压或稍微负电压可以很容易地关闭它。
7、具有非常低的导通电阻。
8、具有高电流密度,使其能够具有更小的芯片尺寸。
9、具有比 BJT 和 MOS 管更高的功率增益。10、具有比 BJT 更高的开关速度。
11、可以使用低控制电压切换高电流电平。
12、双极性质,增强了传导性。
13、安全可靠。
缺点:
1、开关速度低于 MOS管。
2、因为是单向的,在没有附加电路的情况下无法处理AC波形。
3、不能阻挡更高的反向电压。
4、比 BJT 和 MOS管价格更高。
5、类似于晶闸管的P-N-P-N结构,因此它存在锁存问题
IGBT的主要参数:
1、集电极-发射极额定电压UCES是IGBT在截止状态下集电极与发射极之间能够承受的最大电压,一般UCES小于或等于器件的雪崩击穿电压。
2、栅极-发射极额定电压UGE是IGBT栅极与发射极之间允许施加的最大电压,通常为20V。栅极的电压信号控制IGBT的导通和关断,其电压不可超过UGE。
3、集电极额定电流IC是IGBT在饱和导通状态下,允许持续通过的最大电流。
4、集电极-发射极饱和电压UCE是IGBT在饱和导通状态下,集电极与发射极之间的电压降。该值越小,则管子的功率损耗越小。
5、开关频率在IGBT的使用说明书中,开关频率是以开通时间tON、下降时间t1和关断时间tOFF给出的,根据这些参数可估算出IGBT的开关频率,一般可达30~40kHz。在变频器中,实际使用的载波频率大多在15kHz以下。
IGBT如何选型:
1、IGBT额定电压的选择三相380V输入电压经过整流和滤波后,直流母线电压的最大值:在开关工作的条件下,IGBT的额定电压一般要求高于直流母线电压的两倍,根据IGBT规格的电压等级,选择1200V电压等级的IGBT。
2、IGBT额定电流的选择以30kW变频器为例,负载电流约为79A,由于负载电气启动或加速时,电流过载,一般要求1分钟的时间内,承受1.5倍的过流,择最大负载电流约为119A ,建议选择150A电流等级的IGBT。
3、IGBT开关参数的选择变频器的开关频率一般小于10kHZ,而在实际工作的过程中,IGBT的通态损耗所占比重比较大,建议选择低通态型IGBT。
表1:Si SJ-MOSFET和SiC MOSFET器件参数


此外如图 3所示,SiC MOSFET 的RDS(ON)(导通电阻)曲线呈现U形,而SJ-MOSFET的RDS(ON)随着Tj(结温)的升高而升高,这是由于SJ-MOSET的JFET(Junction Field Effect Transistor)区与漂移区电阻起主导作用,同时从图可以看出SiC MOSFET在高温下依然保持较低的导通损耗,而在使用SJ-MOSFET需要特别关注RDS(ON)上升对散热的要求。

图3:Si SJ-MOSFET(图左)与SiC MOSFET(图右)RDS(ON)-TJ特性曲线
表2 :Si SJ-MOSFET和 SiC MOSFET动态参数


表3:为SiC MOSFET和Si IGBT器件静态参数
图 6为选取IKW25T120与C2M0080120D进行参数对比,可以看出SiC MOSFET和Si IGBT的传递特性形态基本相似,当VGS小于VTH时是正温系数,当VGS较高时呈现负温系数。

图 7为器件的输出特性曲线,SiC MOSFET的ID-VDS曲线是从零点开始,是由于其电阻特性,而Si IGBT是在VCE大于VCEsat(饱和压降)后才有电流输出,这是因为IGBT其内部寄生BJT(Bipolar junction Transistor)负责导通。因此在小电流下IGBT的导通压降更大,SiC MOSFET导通损耗更小。在大电流下IGBT能够在较小的导通压降下流通更大的电流,所以IGBT的跨导更大。

表4 :SiC MOSFET和Si IGBT器件动态参数


图10:Si IGBT 与SiC MOSFET Turn off曲线

图11:SiC MOSFET与Si SJ-MOSFET Turn off曲线

根据电源开关电路的工作条件,我们应在电源开关电路中使用哪种半导体器件?
以H桥作为AC-DC转换器的设计为例。直流母线电压为370V,变压器中的电流约为3A,开关的工作频率为15至25kHz。出于安全原因,我们选择一种能够承受650V开关和至少30A的组件。我们没有胶合逻辑,计划使用硅绝缘栅双极晶体管(IGBT),硅超结(SJ),SiC或GaN器件。

100W辅助器件中SiC MOSFET的简单示例电源
选择使用哪种器件的方法是关注其工作条件。通过回答以下一系列问题来做出选择:
·电路设计的开关频率是否低于20kHz?
·功率水平是否高于3kW?
·如果低成本很重要,那么系统成本低吗?
·由三相电网供电么?
如果以上任何一个答案为“是”,则最好的选择是Si IGBT。
如果设计不符合这些条件,那么下一组问题将有助于缩小选择范围:
·开关频率是否在20 kHz至100kHz之间?
·设计将在各种各样的线路和负载条件下运行吗?
·设计是否需要以适中的成本实现高效率?
·设计将由单相电网供电吗?
如果设计满足这些特性,那么最好的器件选择是Si SJ MOSFET。
如果设计不符合这些标准,那么我们可以继续选择:
·开关频率是否高于100kHz?
·设计将在各种各样的线路和负载条件下运行吗?
·数kw的功率吗?需要高效率吗?
·设计是否应允许功率双向流动?
·是由三相电网提供吗?
如果满足这些条件,则最好的器件选择是SiC MOSFET。
或者以下判断标准:
·设计的开关频率是否会高于100kHz且在MHz范围内?
·它将在各种各样的线路和负载条件下运行吗?
·该设计是否应支持最大功率密度和效率的中等功率(最高数百瓦)?
·设计将由单相电网提供吗?
如果设计确实满足这些标准,则最好的选择可能是GaN MOSFET。
根据目标应用选择设备
同样,我们可以通过一组标准来定义要使用的设备。通常,应围绕Si IGBT设计驱动功率超过250W的电机驱动器,运行功率超过3kW的功率因数校正(PFC)电路,运行功率超过5kW的太阳能/风能逆变器以及UPS和H桥逆变器。

适用于AC-DC应用的中复杂度10kW六包PFC转换器
对于工作在250W以下的电动机驱动器,工作在75W至3kW之间的DC-DC转换器,中低功率PFC电路和LCC转换器,正向转换器电源,通用输入AC-DC反激电路以及太阳能微逆变器应使用Si SJ MOSFET。
应该使用SiC MOSFET来构建更高功率的设计,例如以3kW以上的功率运行的PFC电路,以5kW以上的太阳能逆变器,一些电动汽车和车载充电器以及一些不间断电源和嵌入式PFC电路。

双向有源PFC转换器,用于AC / DC应用,逆变器或电动汽车车载充电器
最后,应围绕GaN MOSFET设计由单相电网供电,工作电压低于650V,工作电压在75W至750W之间,且需要小型,凉爽和便携式的应用。
在设备的性能,成本,操作要求,尺寸,热效率,可用性等之间,设计选择之间总是需要权衡取舍。引入Sic和GaN技术可能会通过引入更多选项使探索这些折衷变得更加复杂,但是在某些应用中,它可以帮助您的设计更接近于完美。
声明:此文来源网络,是出于传递更多信息之目的,文中观点仅供分享交流,不代表本公众号立场。转载请注明出处,若有来源标注错误或如涉及版权等问题,请与我们联系,我们将及时更正、删除,谢谢。







