锂电常用参数与计算公式、中英对照

(1)电极材料的理论容量

电极材料理论容量,即假定材料中锂离子全部参与电化学反应所能够提供的容 量,其值通过下式计算:

锂电常用参数与计算公式、中英对照

其中,法拉第常数(F)代表每摩尔电子所携带的电荷,单位 C/mol ,它是阿伏 伽德罗数 NA=6.02214 ×1023mol-1 与元电荷 e=1.602176 × 10-19 C 的积,其值为 96485.3383±0.0083 C/mol

故而,主流的材料理论容量计算公式如下:

LiFePO4 摩尔质量 157.756 g/mol ,其理论容量为:

锂电常用参数与计算公式、中英对照

同理可得:三元材料 NCM(1:1:1)(LiNi1/3Co1/3Mn1/3O2 ) 摩尔质量为96.461g/mol ,其理论容量为 278 mAh/g,LiCoO2 摩尔质量 97.8698 g/mol ,如果锂 离子全部脱出,其理论克容量 274 mAh/g.

石墨负极中,锂嵌入量最大时,形成锂碳层间化合物,化学式 LiC6 ,即 6 个 碳原子结合一个 Li 。6 个 C 摩尔质量为 72.066 g/mol ,石墨的最大理论容量为:

锂电常用参数与计算公式、中英对照

对于硅负极,由 5Si+22Li++22e- ↔ Li22Si5 可知, 5 个硅的摩尔质量为140.430 g/mol ,5 个硅原子结合 22 个 Li,则硅负极的理论容量为:

锂电常用参数与计算公式、中英对照

这些计算值是理论的克容量,为保证材料结构可逆,实际锂离子脱嵌系数小 于 1 ,实际的材料的克容量为: 材料实际克容量=锂离子脱嵌系数 × 理论容量

(2)电池设计容量

电池设计容量=涂层面密度×活物质比例×活物质克容量×极片涂层面积其中,面密度是一个关键的设计参数,主要在涂布和辊压工序控制。压实密 度不变时,涂层面密度增加意味着极片厚度增加,电子传输距离增大,电子电阻增 加,但是增加程度有限。厚极片中,锂离子在电解液中的迁移阻抗增加是影响倍率特性的主要原因,考虑到孔隙率和孔隙的曲折连同,离子在孔隙内的迁移距离比极 片厚度多出很多倍。

(3)N/P 比负极活性物质克容量×负极面密度×负极活性物含量比÷(正极活性物质克容量×正 极面密度×正极活性物含量比)

石墨负极类电池 N/P 要大于 1.0 ,一般 1.04~1.20 ,这主要是出于安全设计,主要 为了防止负极析锂,设计时要考虑工序能力,如涂布偏差。但是,N/P 过大时,电池不可逆容量损失,导致电池容量偏低,电池能量密度也会降低。 而对于钛酸 锂负极,采用正极过量设计,电池容量由钛酸锂负极的容量确定。正极过量设计有 利于提升电池的高温性能:高温气体主要来源于负极,在正极过量设计时,负极电 位较低,更易于在钛酸锂表面形成 SEI 膜。

(4)涂层的压实密度及孔隙率

在生产过程中,电池极片的涂层压实密度计算公式:

锂电常用参数与计算公式、中英对照

而考虑到极片辊压时,金属箔材存在延展,辊压后涂层的面密度通过下式计算:

锂电常用参数与计算公式、中英对照

涂层由活物质相、碳胶相和孔隙组成,孔隙率计算公式:

锂电常用参数与计算公式、中英对照

其中,涂层的平均密度为:

锂电常用参数与计算公式、中英对照

(5)首效

首效=首次放电容量/首次充电容量日常生产中,一般是先化成再进行分容,化成充入一部分电,分容补充电后再放 电,故而:

首效=分容第一次放电容量/(化成充入容量+分容补充电容量)

(6)能量密度

体积能量密度(Wh/L)=电池容量(mAh)×3.6(V)/(厚度(cm)*宽度(cm)*长度(cm)) 质量能量密度(Wh/KG)=电池容量(mAh)×3.6(V)/电池重量

常用锂电术语中英对照

合浆 mixing
涂布 coating
辊压分切 rolling slitting
点焊 spotwelding
激光切 laser cutting
卷绕 winding
组装 assembly package
激光焊 laser welding
烘烤 baking
注液 injection
高温老化 higt temp-baking
化成 formation
二次注液 2rd injection
分容 grading
静置 static
IR 、OCV 测试 IR/OCV test
容量密度 capacity density
能量密度 energy desity
功率密度 power density
开路电压 open Circuit Voltage
标称电压 nominal voltage
额定容量 nominal capacity
实际容量 pratical capacity
放电速率 discharge rate
放电深度 depth of discharge

参数详解

能量密度(Wh/L&Wh/kg)单位体积或单位质量电池释放的能量,如果是单位体积,即体积能量密度(Wh/L),很多地方直接简称为能量密度;如果是单位质量,就是质量能量密度 (Wh/kg),很多地方也叫比能量。如一节锂电池重 300g ,额定电压为 3.7V ,容 量为 10Ah ,则其比能量为 123Wh/kg。

锂电常用参数与计算公式、中英对照

根据 2016 年发布的“节能与新能源汽车技术,可以大概对动力电池发展趋势有一个概念,如上图所示,到 2020 年,纯电动汽车电池单体比能量要达到 350Wh/kg。

功率密度(W/L&W/kg)

将能量除以时间,便得到功率,单位为 W 或 kW 。同样道理,功率密度是指单位 质量(有些地方也直接叫比功率)或单位体积电池输出的功率,单位为 W/kg 或 W/L 。比功率是评价电池是否满足电动汽车加速性能的重要指标。

比能量和比功率究竟有什么区别?

举个形象的例子:比能量高的动力电池就像龟兔赛跑里的乌龟,耐力好,可以长 时间工作,保证汽车续航里程长。 比功率高的动力电池就像龟兔赛跑里的兔子, 速度快,可以提供很高的瞬间电流,保证汽车加速性能好。

电池放电倍率(C)

放电倍率是指在规定时间内放出其额定容量(Q)时所需要的电流值,它在数值上 等于电池额定容量的倍数。即充放电电流(A)/额定容量(Ah),其单位一般为 C(C-rate 的简写) ,如 0.5C ,1C ,5C 等。举个例子,对于容量为 24Ah 电池来说:用 48A 放电,其放电倍率为 2C ,反过来讲,2C 放电,放电电流为 48A ,0.5 小时 放电完毕;用 12A 充电,其充电倍率为 0.5C ,反过来讲,0.5C 充电,充电电流为 12A ,2 小 时充电完毕;电池的充放电倍率,决定了我们可以以多快的速度,将一定的能量存储到电池里 面,或者以多快的速度,将电池里面的能量释放出来。

荷电状态(%)

SOC ,全称是 StateofCharge ,荷电状态,也叫剩余电量,代表的是电池放电后剩余 容量与其完全充电状态的容量的比值。其取值范围为 0~1 ,当 SOC=0 时表示电池放电完全,当 SOC=1 时表示电池完全 充满。电池管理系统(BMS)就是主要通过管理 SOC 并进行估算来保证电池高效 的工作,所以它是电池管理的核心。目前 SOC 估算主要有开路电压法、安时计量法、人工神经网络法、卡尔曼滤波法 等,我们以后再详细解读。

内阻

内阻是指电池在工作时,电流流过电池内部受到的阻力。包括欧姆内阻和极化内阻,其中:欧姆内阻包括电极材料、电解液、隔膜电阻及各 部分零件的电阻;极化内阻包括电化学极化电阻和浓差极化电阻。用数据说话,下图表示一电池放电曲线,X 轴表示放电量,Y 轴表示电池开路电 压,电池理想放电状态为黑色曲线,红色曲线是考虑到电池内阻时的真实状态。

锂电常用参数与计算公式、中英对照

图示:Qmax 为电池最大化学容量;Quse 为电池实际容量;Rbat 表示电池的内 阻;EDV 为放电终止电压;I 为放电电流。 从图中可以看出,电池实际容量Quse<电池理论上的最大化学容量 Qmax 。 由于电阻的存在,电池的实际容量会降 低。我们也可以看到,电池实际容量 Quse 取决于两个因素:

放电电流 I 与电池内阻 R 的乘积,以及放电终止电压 EDV 是多少。

需要指出的是电池内阻 Rbat 会随着电池的使用而逐渐增大。内阻的单位一般是毫欧姆(mΩ) ,内阻大的电池,在充放电的时候,内部功耗大,发热严重,会造成电池的加速老化和寿命衰减,同时也会限制大倍率的充放电应用。所以,内阻做的越小,电池的寿命和倍率性能就会越好。通常电池内阻的测量 方法有交流和直流测试法。

电池自放电

指在开路静置过程中电压下降的现象,又称电池的荷电保持能一般而言,电池自放电主要受制造工艺、材料、储存条件的影响。自放电按照容量损失后是否可逆划分为两种:容量损失可逆,指经过再次充电过 程容量可以恢复;容量损失不可逆,表示容量不能恢复。目前对电池自放电原因研究理论比较多,总结起来分为物理原因(存储环境,制 造工艺,材料等)以及化学原因(电极在电解液中的不稳定性,内部发生化学反 应,活性物质被消耗等),电池自放电将直接降低电池的容量和储存性能。

电池的寿命

分为循环寿命和日历寿命两个参数。循环寿命指的是电池可以循环充放电的次数。 即在理想的温湿度下,以额定的充放电电流进行充放电,计算电池容量衰减到80%时所经历的循环次数。日历寿命是指电池在使用环境条件下,经过特定的使用工况,达到寿命终止条件 (容量衰减到 80%)的时间跨度。 日历寿命与具体的使用要求紧密结合的,通常需 要规定具体的使用工况,环境条件,存储间隔等。循环寿命是一个理论上的参数,而日历寿命更具有实际意义。但日历寿命的测算 复杂,耗时长,所以一般电池厂家只给出循环寿命的数据。

锂电常用参数与计算公式、中英对照

上图为某三元锂电池的充放电特性图,可以看出,不同的充放电方式对电池的寿命 影响不一样,如上图数据,以 25%-75%充放电的寿命可以达到 2500 次,即我们 所说的电池浅充浅放。电池寿命这个话题我们以后还会深入讨论。

电池组的一致性

这个参数比较有意思,即使是同一规格型号的电池单体在成组后,电池组在电压、 容量、内阻、寿命等性能有很大的差别,在电动汽车上使用时,性能指标往往达不 到单体电池的原有水平。单体电池在制造出来后,由于工艺的问题,导致内部结构和材质不完全一致,本 身存在一定性能差异。初始的不一致随着电池在使用过程中连续的充放电循环而累计,再加上电池组内 的使用环境对于各单体电池也不尽相同,导致各单体电池状态产生更大的差异,在 使用过程中逐步放大,从而在某些情况下使某些单体电池性能加速衰减,并最终引 发电池组过早失效。需要指出的是,动力电池组的性能决定于电池单体的性能,但绝不是单体电池性 能的简单累加。由于单体电池性能不一致的存在,使得动力电池组在电动汽车上进 行反复使用时,产生各种问题而导致寿命缩短。除了要求在生产和配组过程中,严格控制工艺和尽量保持单体电池的一致性外,目前行业普遍采用带有均衡功能的电池管理系统来控制电池组内电池的一致性,以 延长产品的使用寿命。

化成

电池制成后,需要对电芯进行小电流充电,将其内部正负极物质激活,在负极表面 形成一层钝化层——SEI(solidelectrolyteinterface)膜,使电池性能更加稳定,电 池经过化成后才能体现其真实的性能,这一过程称为化成。化成过程中的分选过程能够提高电池组的一致性,使最终电池组的性能提高,化 成容量是筛选合格电池的重要指标。下图为 SEI 膜,像不像黑色的玫瑰花。

锂电常用参数与计算公式、中英对照

声明:本站内容资源均来源于网友分享及网络公开合法渠道,但我们不对这些内容的观点、描述的准确性负责,也不保证所有信息的原创性、真实性、完整性及即时性。对于本站所含文章或资料的版权问题,如您发现有侵犯版权的情况,请联系我们进行处理,或注册本站进行认领。同时,我们提倡将本站内容用于个人学习交流,严禁未授权的商业用途,否则由此产生的法律后果由使用者自行承担。感谢支持!
三电系统技术分享

技术角度剖析比亚迪 DM-i 的刀片电池设计

2024-10-30 21:20:43

三电系统技术分享

锂电池阶梯充电方式与循环衰减机制

2024-10-30 21:41:34

2 条回复 A文章作者 M管理员
  1. user1626

    学习学习

个人中心
今日签到
有新私信 私信列表
搜索