-
动力电池配电盒BDU安全设计(二四)直流接触器外壳和环氧失效分析
今天对外壳和辅助部件进行失效分析,并重点对市场上常见的环氧发黄问题进行解析。 一、外壳和辅助部件失效分析 外壳与辅助部件虽不直接参与电能通断,但对接触器的稳定性与安全性至关重要。 1、外壳与封装失效 失效模式:外壳破裂、环氧 / 陶瓷封装密封不良、绝缘性能下降。 失效原因:机械冲击(如车辆碰撞);高温老化导致材料脆化;封装工艺缺陷(如气泡、裂缝)。 对功能的影响: 外壳破裂:内部部件暴露,易受灰尘…... 彡彡厶厶
- 0
- 1
- 7
-
必看!新能源汽车火灾调查全解析
引言 在新能源汽车行业飞速发展的今天,道路上的新能源汽车越来越多。然而,随着保有量的不断增加,新能源汽车火灾事故也开始频繁出现在大众的视野中,引发了广泛关注。当这些不幸的事件发生时,对火灾现场进行妥善保护与科学调查,不仅是查明事故真相、明确责任归属的关键,更是推动行业安全发展、保障公众生命财产安全的重要基石。本文将系统解析新能源汽车火灾现场调查的标准流程和关键环节。 “火灾调查4431…... 彡彡厶厶
- 0
- 1
- 32
-
铜铝排专题:绝缘材料怎么选?
铜铝排专题:绝缘材料怎么选? 电池包内铜排绝缘材料的选择需围绕电池包工况、性能需求、工艺适配性等方面,结合绝缘材料特性进行匹配。以下是具体选择逻辑与步骤: 一、电池包的核心工况要求 绝缘材料的选择需从电池包的实际工作环境出发,锁定关键约束条件: 1、温度范围: 若电池包长期工作在 - 40℃~80℃(如小型储能设备),可选择 PVC、普通 PA66 等中耐温材料; 若面临 - 40℃~120℃的宽…... 彡彡厶厶
- 0
- 0
- 0
-
资料下载|电池系统结构及安全设计
*文档围绕电池系统结构及安全设计展开,从产品简介、结构设计概述到模组与系统结构设计、轻量化及安全设计等方面进行了详细阐述,以下是按目录的简单总结: 电池系统产品简介 电动汽车与电池系统:电动汽车核心为 “三电” 系统,即电驱、电池、电控系统,其中电池系统包含电芯、模组、电池包等。 动力电池简介:传统汽车靠燃油驱动,新能源汽车靠电力驱动,动力电池在其中起关键作用。 三类产品:公司产品按场景分为动…... 电车小子
- 0
- 16
- 404
-
动力电池CCS安全设计(五)FDC
在动力电池和储能领域,目前CCS市场应用主要以 FPC方案为主,今天介绍的FDC 凭借工艺简单、成本低的优势,正逐步在某些量产数量规模大的场合得到应用。 下面就分析一下为什么FDC开发成本高、应用量大就成本低的原因。 一、FDC 的定义与技术特点 1、定义 FDC指柔性模切线路板(Flexible Die-cutting Circuit),是以聚酰亚胺(PI)或聚酯(PET)薄膜和铜箔为基材,通过…... 彡彡厶厶
- 0
- 0
- 32
-
动力电池电气系统安全设计(一)概述
由于关键的电池系统电气系统CCS和BDU部分已经讲述过了,就不再本章论述了,可以阅读下面的链接。 BDU设计: 动力电池配电盒BDU安全设计(一)壳体 动力电池配电盒BDU安全设计(二)铜排 动力电池配电盒BDU安全设计(三)接触器 动力电池配电盒BDU安全设计(四)熔断器 动力电池配电盒BDU安全设计(五)电流传感器和分流器 动力电池配电盒BDU安全设计(六)安全要求 动力电池配电盒BDU安全设…... 彡彡厶厶
- 1
- 0
- 13
-
动力电池模组系统安全设计(八)气凝胶与回形框设计
前面文章讲解了电芯膨胀力危害,在模组设计上一般采用电芯之间预留间隙,并填充缓冲材料来抵消膨胀力的影响。 可是大家经常听到的是电芯之间的用的是气凝胶,起到缓冲作用的回形框到是并不常被提起,这是怎么回事呢? 一、复合气凝胶垫结构与功能 我们说的电池包内用的 “气凝胶” 又叫做硅胶框气凝胶缓冲隔热垫,并非单一隔热结构,而是回形框+ 气凝胶的复合结构,两个的作用还真不一样,一个应对电芯膨胀、一个防热失控扩…... 彡彡厶厶
- 0
- 1
- 3
-
PACK热失控蔓延抑制技术(一)热失控机理和ARC测试
在电动汽车产业蓬勃发展的今天,电池安全如同高悬的达摩克利斯之剑,成为全社会关注的核心焦点。其中,热失控风险犹如一颗随时可能引爆的“定时炸弹”,严重危及驾乘人员的生命安全与车辆的稳定运行。极端的环境温度、不合理的过充过放行为、电池内部或外部短路,以及电池制造过程中潜藏的缺陷等,都极有可能成为引发热失控的导火索。鉴于热失控风险难以从根本上杜绝,构建一套行之有效的热失控蔓延防护设计体系就显得尤为重要且紧…... 彡彡厶厶
- 0
- 4
- 30
-
动力电池电气系统安全设计(十)铜铝排环境和机械性能要求
三、环境适应性 1、低温、高温试验 技术要求: 模拟铜排在实际使用中可能遇到的极端温度环境,检查其性能变化。低温试验一般在不低于-40℃下,存储不超过24h;高温试验不超过85℃,存储不超过48h。试验后,铜排外观应无变形,绝缘和耐压性能不降低。 检测方法: 将铜排样品放入高低温试验箱,设置对应温度及时间参数,试验结束后取出样品,在常温下进行外观检查及电气性能复测。 2、温度冲击试验 技术要求: …... 彡彡厶厶
- 1
- 1
- 6
-
PACK热失控蔓延抑制技术(四)主动安全设计
PACK热失控蔓延抑制技术(一)热失控机理和ARC测试 PACK热失控蔓延抑制技术(二)泄压设计 PACK热失控蔓延抑制技术(三)隔热、阻燃和绝缘设计 三、热失控主动安全设计 1 降温设计 为了延缓整包热蔓延,电池系统要有抑制策略。当电池管理系统检测到热失控信号,会马上和整车配合,通过控制液冷回路水泵,让电池回路进入自循环降温。极氪 001 的极芯动力电池包,热失控传感器实时检测电池包内部的压力,…... 彡彡厶厶
- 0
- 1
- 27
-
铜铝排专题:铝排端子导电铜环方案讨论和总结
上期发表后大家对TELSONIC方案有些迷惑,特别是其中的第一个方案。 铜铝排专题:铝排端子导电铜环细节详述 这两天查询了资料,考虑了一下,先就TELSONIC方案进行讨论,不一定是标准答案啊,欢迎大家讨论。然后,又找了几家的导电铜环方案,供大家参考。 一、TELSONIC方案探讨 第一个方案铝排和铜端子直接接触,群友感觉这样方式会有问题,考虑了一下,铝排和铜端子直接相连,此处铝排会很快氧化,铝排…... 彡彡厶厶
- 0
- 0
- 3
-
动力电池配电盒BDU安全设计(三三)小鹏终于把BMS塞进了BDU
这几天看到知化汽车的2025款小鹏G6电池包拆解视频中的BDU,与8月15的发文《动力电池配电盒BDU安全设计(二九)BDU趋势》分析一致,BDU集成BMS和液冷,小鹏都给实现了, 真是太令人震惊了。 关注公众号,按照文章末尾方式,就送文中的资料。 一、BDU集成BMS来了 上个图先看外观,BDU单独集成在电池包的一侧头部。 另一面的图片,看着也是中规中矩。 小鹏去年就把CMU给集成到CCS中去了…... 彡彡厶厶
- 0
- 0
- 33
-
资料下载|氢燃料电池模型PEMFC
氢燃料电池模型PEMFC,基于MATLAB/simulink开发的。包括空压机模型,阳极氢气进气模型,阴极氧气进气模型,电堆模型等,用于模型仿真及前期的控制策略开发。1.PEMFC燃电模型,密歇根大学研发,效果好2.有详细的中文说明文档,具体到每个公式都有说明,没有文档看模型是非常难受的,这个文档非常详细,非常适合入门燃料电池系统建模的人学习。3.附自己用的一些燃电系统建模的资料。... 兔兔萝卜
- 1
- 3
- 142
-
必看,动力电池保温方案技术趋势分析
前言: 动力电池作为电动汽车的 “心脏”,其性能与寿命直接决定了车辆的续航能力和用户体验。然而,极端温度(严寒或高温)对电池的影响不容忽视:低温环境下,电池内阻增大、充电效率下降,甚至引发析锂风险;高温环境中,电池自放电加剧、电解液分解加速,导致容量衰减和热失控隐患。 据行业数据显示,在 - 20℃环境中,电池续航可能衰减 30%-40%,而持续高温则会使电池寿命缩短 50% 以上。 为应对这一挑…... 彡彡厶厶
- 0
- 0
- 6
-
铜铝排专题:软铜排的扩散焊接及自动化加工
铜铝排专题:软铜排的扩散焊接及自动化加工 上篇文章介绍了软铜铝排的加工工艺,可以看出软铜排加工的核心是高分子扩散焊接。 本文继续讲解软铜排知识,首先软铜排扩散焊接原理,然后介绍自动化生产设备。 图片来自:无锡海菲智能装备 一、高分子扩散焊接原理 1、扩散焊定义: 扩散焊(DFW)是一种固相焊接方法,核心在真空或保护气氛环境中,是将待焊工件紧密贴合,加热至母材熔点以下温度,并施加压力,经一定时间的保…... 彡彡厶厶
- 0
- 0
- 4
-
PACK热失控蔓延抑制技术(三)隔热、阻燃和绝缘设计
PACK热失控蔓延抑制技术(一)热失控机理和ARC测试 PACK热失控蔓延抑制技术(二)泄压设计 1.5隔热设计 1.5.1电芯间隔热设计 1.5.1.1方形电芯 在大面隔热方面,采用气凝胶隔热,气凝胶具有优异的隔热性能,能够有效阻止热量在电芯大面之间传递;电池一般采用气凝胶+硅胶框垫片形式间隔电芯,同时抑制电芯膨胀。 图9极氪001神行电池间采用气凝胶 在侧面传热方面,对于三元…... 彡彡厶厶
- 0
- 1
- 32
-
动力电池电气系统安全设计(二)低压线束设计
一、电池包线束功能 线束是电池包电路的网络主体,没有线束也就不存在电路,其主要分为动力系统低压线束和动力系统高压线束。 低压线束则如同电池包的网络神经,实现电池包内部的各个电气件间的电路物理连接,负责整个电气零部件之间的信息的传递,一般的电池包线束分为主控线束、从控线束、BDU线束等。 二、线束设计流程 1、线束原理图设计 电池包电气原理图的绘制及整车接口核对; BMS管理单元及电气件清单确定; …... 彡彡厶厶
- 0
- 1
- 7
-
动力电池包PACK全流程开发阶段任务详解
在新能源汽车和储能行业,电池包(PACK)的开发是一项复杂的系统工程。一个成熟的 PACK 开发流程不仅能确保产品性能达标,还能降低成本、缩短周期。今天,我们就来拆解 PACK 开发的全流程关键节点,帮你理清从设计到量产的技术脉络! 一、概念设计及立项阶段 1 概念设计 任务目标:深入调研乘用车、SUV 等车型需求,精准确定产品定位。根据整车需求定义敲定电池包容量、电压、尺寸等核心参数,组织专…... 彡彡厶厶
- 0
- 0
- 45
-
动力电池电气系统安全设计(四)高压连接器和换电连接器
本章把电池包的高压连接器分为非换电车型和换电车型连接器,以及包内高压连接器进行论述。 一、电池包对外高压连接器 非换电车型的电池包对外高压连接器的使用数量由于车型不同,数量相应不同。 根据连接系统功能,高压连接器基本上分为:快充高压连接器、前驱(后驱)高压连接器。 高压连接器组成 高压连接器基本上由:外壳(公端、母端)、端子(公母端子)、屏蔽罩、密封(尾部、半端、线端、接触)尾部防护盖、高压互…... 彡彡厶厶
- 0
- 0
- 26
-
资料下载|电池工程师 面试题库,230道题,含答案和解题过程
该文档是一份聚焦电池工程师领域的面试题库大全,包含 230 道问答,覆盖电池技术全链条知识,具体大纲如下: 一、电池化学 以锂离子电池为核心,涵盖其锂离子扩散机制(充放电过程中离子迁移步骤及对容量、循环寿命等的影响)、循环稳定性与电解液组成的关系(有机溶剂、盐类、添加剂的作用)、热管理在安全性中的作用及解决方案(散热设计、温度监控等)、未来发展方向与挑战(容量提升、快充技术等)等内容…... 兔兔萝卜
- 1
- 2
- 130
-
动力电池配电盒BDU安全设计(三十)小米SU7 BDU技术分析
BDU断断续续写了那么多内容,还没有整体的分析过。正好看到有小米SU7的BDU拆解,就结合着专利给大家分析下: 一、基本信息 小米BUD的专利发明申请公布号 CN 115102264 A,名称为:集成化配电盒、电池包及车辆,申请人:小米汽车科技有限公司。 实际BDU在电池包的维修仓位置和布线如下图。 二、BDU内部构造 1、壳体: 壳体还是比较规整的,含上壳体和下壳体,设有快充接口、慢充接口、电机…... 彡彡厶厶
- 0
- 1
- 7
-
铜铝排专题:铝排折弯
从上两期文章分析可知,在国内汽车充电高压电路中,并没有采用特斯拉的铝棒,而是铝排凭借轻量化与高导电特性成为主流选择。 从充电插座到电池包,铝排需在车内完成多次折弯转向,那么我们不禁要问,铝排是怎么折弯的?折弯过程中又需要考虑哪些关键因素? 一、铝排的折弯方式: 针对充电回路的布线需求,铝排主要通过三种折弯方式实现转向: 1、立弯(窄面弯曲) 是充电口附近的常用方式,适用于水平方向的转向。对于较窄的…... 彡彡厶厶
- 0
- 0
- 8
-
铜铝排专题:电池包中为什么用镍
一、镍的特性及标号体系 1、镍的性质 镍是一种具有重要工业价值的金属,其熔点为 1453℃,沸点 3075℃,比重 8.8g/cm³。它具有出色的抗腐蚀性能,在空气中不易氧化,即便加热到 700~800℃也能保持稳定,同时焊接性良好,这些特性使其在电池包内得到广泛应用。 2、国内牌号体系 以 “N” 为前缀(代表镍),数字编号反映纯度等级,常见牌号如下表: 3、加工状态标识 Y:硬态,经深度冷加工…... 彡彡厶厶
- 0
- 2
- 15
-
l 锂电池制造的 13 大流程及关键参数
随着技术不断发展,电池的各种全新制造工艺和技术层出不穷,今天我们就来 看一看,锂电池的详细制作工艺。 首先,锂电池制作可分为 正极配料、负极配料、涂布、正极制片、负极制片、正 极片制备、负极片制备、卷绕、入壳、滚槽、电芯烘烤、注液、超焊盖帽 共 13 大步骤。 1 正极配料 锂电池的正极材料由活性物、导电剂、粘结剂组成,其具体制作流程如下: 1.1 来料确认&烘烤 一般导电剂需大约 120…... 彡彡厶厶
- 0
- 1
- 566



















































